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This paper presents a new approach to determine the conditions that

ABSTRACT

ensure diagnosability properties in complex systems. In previous approaches, a
fault-test relationship is assumed and all diagnosability conditions depend on
both this relationship and the desired diagnosability property. In our approach,
such assumptions are not required, so that diagnosability conditions depend
only on the desired diagnosability property.

This method uses a new system-level fault model having both internal and
observable test outcomnes and allowing multiple test outcomes to be associated
with each fault situation. By defining different sets of internal test outcomes,

one can represent the desirable diagnostic properties of the model.

In this paper, diagnosability conditions for models possessing morphic pro-
perties are given. As an example, the conditions are applied to the fault model
of Preparata, Metze and Chien. The results obtained demonstrate that 1) new
diagnosability conditions can be determined and 2) the previous diagnosability
conditions can be reconstructed and applied to a larger class of fault models.
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1. INTRODUCTION

One of the most challenging problems currently facing the electronics
industry is that of designing systems and tests for the detection and diagnosis of
failures. There are two primary causes of this problem: 1) the increased com-
plexity of systems has greatly increased the number of possible fault situations,
and 2) the reduced accessibility of the circuit due to higher density components
has reduced the availability of test results. Both causes increase the likelihood
of multiple failures.

Previous approaches have addressed this system design and test generation
problem by using a system-level fault model [FRI80] to describe the relation-
ship between fault situations and test outcomes. Such models effectively |

reduce the number of fault situations by treating a large aggregation of failures

as a single complex fault situation. Test results from these fault situations are
compactly represented in order to reduce the volume of test data. These
models are thus vehicles for examining the diagnosability of a system and

improving the selection of tests.

This paper presents a new approach to determine the conditions that
ensure diagnosability properties in complex systems. In previous approaches, a
fault-test relationship is assumed and all diagnosability conditions depend on
both this relationship and the desired diagnosability property. In our approach,
such assumptions are not required, so that diagnosability conditions depend
only on the desired diagnosability property. Since guidelines for system testa-
bility are derived from diagnosability conditions, the guidelines developed from

this new approich are not limited by an assumed fault-test relationship.

The approach uses a new system-level fault model to represent relation-
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ships between faults and test outcomes. By permitting multiple test outcomes
to be associated with each fault situation, this model can represent a large
aggregation of failures as a single system-level fault situation. Additional strug-
ture is introduced by using both internal and observable test outcomes. Inter-
nal test outcomes play a role analogous to that of state variables in linear sys-
tem models by allowing the representation and analysis of properties that may
not be directly observable. By defining different sets of internal test outcomes,
one can represent the desirable diagnostic properties of the model.

The application of this new approach is demonstrated by determining diag-
nosability conditions for multiple fault diagnosis. Efficient analysis of multiple
faults is provided by models possessing morphic properties. These properties
allow one to determine multiple fault test outcomes from the outcomes of the
single fault components. As an example, we apply the conditions to the fault
model of Preparata, Metze and Chien {PRE67]. The results obtained demon-
strate that 1) new diagnosability conditions can be determined and 2) the previ-
ous diagnosability conditions can be reconstructed and applied to a larger class

of fault models.
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2. FAULT MODEL DEFINITION

Fora typml fault model, a set of fault situations is given and a set of
observable syndromes representing the possible results of a testing procedure is
defined. Thus, the typical fault model is described by the threetuple
(4,Y",5(.)), where A is a set of fault situations, Y is a set of observable syn-
dromes and G'(.) is a map from A into Y?.

In contrast to the typical fault model, the model defined in this paper is
described by the quintuple (4,Z%,Y?,G(.).H(.)), where A is a set of admissible

~ fault situations, ZP is a set of internal syndromes, Y7 is a set of observable syn-

dromes, G(.) is a map that relates fault situations and internal syndromes, and
H(.) is a map that relates internal syndromes and observable syndromes.

Clearly, all typical fault models may be represented by choosing H(.) as the
identity map, and letting G(.) = G(.). It is possible, however, to introduce
additional structure into this model by using various sets of internal syndromes
and maps H(.). As a result, a specific m;wde'l has multiple representations,
some of which are more convenient for analyzing and deriving diagnosability
conditions.

We will now define precisely the components of the fault model. To facili-
tate the definition of fault situations, we define a set of distinct elementary fault

situations

E-Up fzn..-,fn}n

where the fault situations f;, / = 1,2, ... , n are elementary only in the sense
that there is no need to isolate failures more precisely. As a result, an elemen-
tary fault situation may represent an aggregation of distinct failure modes, each

of which may have a different effect on the overall operation of the system.
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Let A, be the family of all subsets of E. The empty subset represents the
nonfaulty mode of the system and is denoted by Fy. All possible fault situa-
tions are represented by elements in 4,; however, in many cases it is desirable
to restrict the analysis to a subset of the possible fault situations. Let 4 C 4,
be the set of admissible fault situations,--that is, it is assumed that only these
fault situations may occur. Often, the admissible fault situations are defined as
the subsets of E that have cardinality less than or equal to an integer 7,

1 € 7 € n. Inthis case, denote 4, C A4, as the set of fault situations defined

by
A,={Fea | IFl g7}
The union of two fault situations, F; UF;, represents the fault situation
consisting of all elementary faults in F; and F;. Similarly, the intersection

F;NF; represents the fault situation consisting of only those elementary faults
common to both F; and F;.

Associated with the sysiem is a testing procedure consisting of a set of p

tests,
T={ty, t3..., 8}

The outcome oftestt, is denoted by a variable x; that takes values in a set Z.
We have assumed that Z is finite, therefore let Z be the set

Z=(0,1,2,....4q-1}.

The test outcome 0’ represents the behavior of each test in the presence of
fault situation Fog. Clearly, in order for the model! to provide useful informa-
tion, it is necessary that ¢ 3 2. When g = 2, a test that produces outcome 0’
is said to pass, and a test producing outcome ’1’ is said to fad.

roameneo
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The set of test outcomes for a single application of all p tests is represented
by the p-tuple
x-(XIn xz. cae s &)-

This vector of test outcomes is called an internal syndrome of the system and the
space of all internal syndromes is denoted by Z°.

Failures are assumed to be permanent and deterministic so that a given set
of failures occurring simultaneously always produces a single unique syndrome.
Yet, because of the complexity allowed in the definition of an elementary fault
situation, more than one syndrome may be associated with a given admissible

fault situation.

The fault model defined in this paper uses a point-to-set map to represent
this uncertainty. Each choice of a set of admissible fault situations and a given
testing procedure defines a unique admissible fault situation - syndrome ( AFSS)
map G(.) from the domain 4 of admissible fault situations to collections of
non-empty subsets in the range Z? of all possible internal syndromes. The
assumption that the sets E, T, and Z are finite implies that the AFSS map can
be represented in a tabular form by an AFSS table.

Although the set Z may reflect some internal structure of a testing pro-
cedure, such knowledge may not be available if information is lost in the pro-
cess of observing the syndromes. This occurs, for example, if different test
outcome values representing internal properties of the model cannot be dis-
tinguished by an observer. In 6rder to introduce this concept into the fault
model, let

Y -— {0. 15 2’.-.9"_1}

be the set of possible observations of test outcomes, and let the observation
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process be represented by a map

H():Z —Y.

In this paper we consider only those observation processes that can be decom-
posed into observations of individual test outcomes. The observation of a
intermal syndrome is thus represented by the map

H(x)=( H(xl). H(Xz)....n H(Xp) ),

where x is a syndrome in Z”, In this manner, the primary structure of the
model is described by the AFSS table. The map FA(.) may be either a point-to-
point or a point-to-set map. In'the latter case, it is possible to restrict ihe
uncertainty associated with a fault situation to the observation map and produce

a point-to-point AFSS table by choosing specific internal test outcomes.

Here we have assumed that the nonfaulty situation Fy and each elementary
fault situation are admissible. Thus, A, = E U {Fp} is the greatest lower
bound of 4. Also, the internal test outcome 0, which represents the behavior
of a test when the system is nonfaulty, is assumed to be uniquely observable as
the observable outcome '0°. In order to remove trivial models, we have also
assumned that at least one test and more than one internal and more than one
external test outcome exist. Throughout this paper we have assumed the fol-
lowing basic hypothesis.

Hypothesis 2.1: Let S = ( 4, Z?, Y?, G(.), H(.)) be a fault model. Then,
@ n=I1El31

(iD A41C 4

Gi) p=IT1 31

i) ¢q=1z1 32

W r=Irl32




(vi) GUFg) = {(00,..,0) }
(vi) H(0) = 0.

The purpose of defining such a general structure for fault models is to
allow flexibility in defining diagnosability properties and in deriving diagnosabil-
ity conditions. This paper deals primarily with the one-step r-fault diagnosabil-
ity property [PRE67], in which all admissible fault situations of cardinality r or
less can be repaired by replacing all faulty and only faulty components after
only one application of the testing procedure.

Definition 2.2: A fault model S is one-step r-fault diagnosable if and only if r is
such that 1< 7<<n, and for every pair of fault situations F,.F, in 4 NA, such
that F,#F,,

H(G(F,)) N H(G(F)) = ¢.




3. MORPHIC FAULT MODELS

Without additional structure in the fault model, one cannot simplify the
conditions for one-step r-fault diagnosability beyond the definition. Under the
basic hypothesis, the only inherent structure of the fault models exists in the
set 4, by virtue of the union operation. For this set, the union operation is an
associative and commutative binary operation, and the fault situation Fy func-
tions as the unique identity element. This inherent structure is of value when
multiple faults (fault situations of cardinality greater than one) are admissible
and the binary operation on 4,, is in some manner "preserved” by the maps
G(.) and H(.). This implies that multiple f‘ault. syndromes can be obtained
from the syndromes of their elementary fault components. When this is possi-
ble, the model is said to possess a morphic property [HAVS1].

Morphic properties are of great importance in reducing the complexity of
fault models, since they imply that the analysis of a model’s diagnosability and
the development of diagnostic algorithms can be based solely on the knowledge
of the elementary fault syndromes. The presence of a morphic property also
reduces the complexity of determining and storing the AFSS table by several
orders of magnitude. One should note that the existing graphical fault models
[BAR76, HOL79, PRE67, RUS75a, SOG64] have reduced their complexity in
exactly this way; the graph is actually a description of the elementary fault
situation and syndrome association. Moreover, the complexity of determining
the existence of diagnosability properties and deriving diagnostic algorithms is
also reduced in these models. Evidence for this is found in the existence of
sysiem-level diagnostic algorithms [COR76, KAM7S, MEY78, MEY79,
MEY81, SMI79] that correspond only to models with morphic properties.

e e e bt s i e 4




11

3.1 WEAKLY MORPHIC PROPERTY

The morphic properties we are considering occur when an associative and
commutative binary operation between internal test outcomes exists, called a
morphic map.
Definition 3.1.1: A morphic map is an associative and commutative binary opera-
tion * on the set Z of internal test outcomes.
Let a = (ay, ay, ..., @,) and b = (by, by, ..., b,) be syndromes in Z?, then
a*}p is the syndrome defined by

a*b = (a,*by, ayrb,,..., a,*b,).

Let Q and R be subsets of syndromes in Z7; then Q* R is the subset of syn-
dromes defined by

Q*R ={a*b | (a,b) € OxR ).

When all fault situations are admissible and all multiple fault syndromes
can be calculated from the elemenary fault syndromes using a morphic map,
the model is said to be weakly morphic.

Definition 3.1.2: A fault model S is weakly morphic with respect to the morphic
map * if and only if

(i) A=A, and

(ii) for every Fin A, such that |[F[>1,

G(F) =G/, *G(f, *..sG(f;,,)
17l
where f,€F, 1</< IFl and Y fy=F.

Fault models that are not weakly morphic may possess a weak{y morphic
approximation from which diagnosability properties can be implied.
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Definition 3.1.3: The fault model Se = (A4, Z?, Y?, Gs(.), H(.)) is the weakly

morphic approximation of a fault model S = (A, Z7, Y?, G(.), X.)) with respect

to the morphic map # if and only if (i) S« is weakly morphic with respect 10 +,

and (ii) G(F)CGs (F) for every Fin A. |
3.2 DETECTABLE SUBSETS

Our purpose is to determine those conditions of the fault mode! that
ensure pood diagnosability properties. By considering the class of weakly
morphic fault models, we can reduce this task to that of finding those condi-
tions of elementary fault syndromes and morphic maps that ensure diagnosabil-
ity. It is particularly interesting to examine the consequences of assuming that
the test outcome "0" functions as the identity element of the set Z with respect

to the morphic map.

Definition 3.2.1: A fault model S satisfies the Irredundancy Hypothesis if and only
if S is weakly morphic with respect to a morphic map * such that 0*g==g for

every a in Z.

As a consequence of this hypothesis, not only do the diagnosability condi-
tions of the fault model depend only on the elementary fault syndromes, but
only on the nonzero outcomes of these syndromes. This is a characteristic of
systems that are not redundant. In such systems, the presence of an elemen-
tary fault situation that always causes a certain test to have a "0" test outcome
can never be detected by that test, even if combined with other fault situations.
The Irredundancy Hypothesis thus represents a strong assumption on the
nature of the fault model. One should note, however, that all system-level
fault models referred to in this paper have representations satisfying this
hypothesis. '
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The Irredundancy Hypothesis leads to an important concept related to diag- <
nosability conditions for these models. This concept is that the syndromes of a |
fault situation can be divided into portions,--ie., subsets of tests,--such that the
test outcomes in a given portion depend only on a subset of elementary faults

in the fault situation. There is thus a "decoupling” between some elementary
faults and some test outcomes that permits diagnosability conditions to be
simplified. When the test outcomes in one portion of the syndromes ensure
that all the syndromes of a given fault situation are nonzero, then the subset of
elementary faults associated with that portion of the syndrome is called a detect-
able subset of the fault situation. We will show that a great deal of
information—and in some cases, all information--about the diagnosability of a
fault model can be ascertained by exammmg only detectable subsets.

Definition 3.2.2: Let S be a fault model and let F be an admissible fault situa-
tion. A set B of elementary faults is a detectable subset of F if and only if
(G B=¢
(i) BQF
(iii) for every a € H(G(F)) an index k exists, such that 1<k <p, where
a, 70 and G(f ), =0 for every f€F—B
(iv) the only subset of B satisfying (i), (ii) and (iii) is B itself.
The family of all detectable subsets associated with a fault situation charac-
terizes the detectability of the fault situation. Tt is therefore convenient 1o

introduce the concept of a detectability map.

Definition 3.2.3: The detectability map A(.) of a fault model S is the point-to-set
map from A to A, defined for every F in 4 by 1

A(F)={( B€A, | B is a detectable subset of F ).




The term "detectable” in these definitions is appropriate since one can
casily show that a fault situation F is always distinguishable from the nonfaulty
situation if and only if A(F)72¢. Thus, a necessary condition for a fault model
to be one-step 7-fault diagnosabie is that A(F)=¢ forall Fin A NA_.

The importance of defining detectable subseis is that sufficient conditions
for one-step r-fault diagnosability for models satisfying the Irredundancy
Hypothesis have been determined based on these subsets. Given in the follow-
ing sections, these conditions make use of the fact that if B is a detectable sub-
set of a fault situation F, then B is also a detectable subset of every fault situa-
tion F where B CF CF. This fact justifies condition (iv) of Definition 3.2.2, in
which only the smallest subsets satisfying conditions (i), (ii) and (iii) are
included. One should also note that for a model satisfying the Irredundancy
Hypothesis, if F is a fault situation and B€ A(F), then a test k exists such that

G(F) = G(B), * G(F—B), = G(B),.

From the preceding comments, one would expect that determining the
syndromes in G(F and deriving diagnosability conditions is easier when
IBl<<IF ||, because this implies the maximum amount of "decoupling”
between faults and test outcomes. It is therefore not surprising that fault
models exist in which all detectable subsets consist of exactly one elementary
fault situation [PRE67, RUS75al. Such cases demonstrate that diagnosability
conditions have been greatly simplified.

- PSP YR S




4. SUFFICIENT CONDITIONS FOR ONE-STEP

T-FAULT DIAGNOSABILITY

The model and properties defined in the preceding sections can be used to
derive new cornditions for one-step r-fault diagnosability. In this section,
sufficient conditions are derived for models satisfying the Irredundancy

Hypothesis. Since all known system-level fault models have representations .
satisfying this hypothesis, these conditions have a wide application. As an

example, the conditions are applied to the fault model of Preparata, Metze and

Chien [PRE67] and, in particular, diagnosability conditions based on the

Irredundancy Hypothesis are compared to those derived by Hakimi and Amin

[HAK74). (The proofs of theorems and lemmas in this section can be found in

Section 6 of this paper.)
4.1 DIAGNOSABILITY THEOREMS

In the following results, we demonstrate that the Irredundancy Hypothesis
relates conditions involving detectable subsets with one-step r-fault diaénosabil—
ity. We provide the basic conditions on the detectability map A(.) that ensure
one-step r-fault diagnosability in Lemma 4.1.1. These conditions can be
simplified using Lemma 4.1.2, and this result is given in Theorem 4.1.3. A
special case of the map A(.) that applies to existing fault models [PRE67,
RUS75a] is given in Definition 4.1.4 and the resulting diagnosability conditions
are given in Theorem 4.1.5.

The definition of one-step r-fault diagnosability involves comparing the

syndromes for each pair of fault situations in the set P;(r), where
Py(7) = {(F,.F,} | F;.F €A, F,7F)} J

for every 7 such that 1 rn. The following lemma uses the pairs of fault




16

situations in P,(r) to relate conditions on the map A(.) with one-stcp r-fault
diagnosability.
Lemma 4.1.1: Let S satisfy the Irredundancy Hypothesis and let 7 be such that
1< rn. 1f to every pair {F,,F,} in P;(7) there corresponds a set B in
A(F, UF,) such that either BNF,~¢} or BNF,=¢, then S is one-step r-fault
diagnosable.

Instead of using the set P;(7), one may use a smaller set P,(7) where

PAr)={(F,.F,} | F,.Fy€A,. \F,UF, 1>,
V£, NF, l=minC1F, UF, 11, 20—l F, UF, ) )

for every r such that 1< rn.

Clearly, P,(7) is always a subset of P(7). If, for example, =5, then
1P, (1)} = 1Py (1)l =15; however, | P,(2)] ~65 is less than | P;(2)]~120 and
1P,(3)0=75 is less than 1Py(3)=325. The following lemma shows that the
conditions of Lemma 4.1.1 can be verified by examining only pairs of fault
situations in Py(7).

Lemma 4.1.2: 1f to every pair {F,.F,} in P,(+) there carresponds a set 8 in
A(F, UF,) such that either BNEF,=p or BNFy~=p, then 10 every pair {F,.F, )
in Py(r) there corresponds a set B in A(F, UF,) such that either BNF,=~¢ or
BN\ Fy=p.

Lemmas 4.1.1 and 4.1.2 immediately imply the following theorem.
Theorem 4.1.3: Let § satisfy the Irredundancy Hypothesis and let = be such that
1<rn. If to every pair {F,.F,} in P,(r) there corresponds a set B in
A(F, UF,) such that either BNF,~¢ or BNF,=p, then S is one-step r-fault
diagnosable.
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It is imeresting to examine the consequences of assuming that all detect-
able subsets in A(F) contain one and only one elementary fault situation.

Definition 4.1.4: A map A(.)4—A, satisfies the Cardinality Condition if and only
if 1.8 |=1 for every B€ A(F) and every FEA.

As a consequence of A(.) satisfying the Cardinality Condition, the condi-
tions ensuring one-step 7~fault diagnosability reduce to that of considering only
the cardinality of A(F).

Theorem 4.1.5: Let S satisfy the Irredundancy Hypothesis, let A(.) satisfy the
Cardinality Condition and let = be such that 1<r<n. If

1A > minClF I-1,2—0F DD
for every F€A; such that 7< IF isir; then § is one-step 7-fault diagnosable:
42 APPLICATION TO THE PMC FAULT MODEL
In this section, we will consider the following representation of the
Preparata, Metze and Chien (PMC) [PRE67] model based on the graphical
description given in [HAK74].
Dejinition 4.2.1: Let G(V,C) be the graphical description of a PMC fault model.
S = (4,, {0,1,2)%, {0,1), G(.), H(.)) is a type I representation of this PMC
model if and only if
G n=1Hrl
Gy p=lcl
(iii) for every (v;,v,)€C, 1k €p exists such that for every F€ 4,
2, f,€F

G(F), =11, fi4F. f,€F,
0, otherwise

/g




(iv) H(0)=0, H(1)=1 and F(2)~({0,1}.

This representation of a PMC fault model implies a one-to-one correspon-
dence between units (vertices) in ¥ and elementary fault situations in E, and
between edges in C and tests in T. This representation is meaningful sinoe a

~ subset of faulty units in ¥ corresponds to every F € 4,,, and H(G(F)) is equal

to the syndromes for this set of faulty units. The following lemmas show that a
type 1 representation of a PMC mode! satisfies the Irredundancy Hypothesis
and A(.) satisfies the Cardinality Condition.
Lemma 4.2.2: If § is a type 1 representation of a PMC fault model, then S is
weakly morphic with respect 10 a morphic map *, where 0« 0=0, O% ] =1+ Q=]
and 0% 2==1# 2= Q==2%1=2, (The values 1*1 and 2+ 2 are not used in this
representation.)
Corollary 4.2.3: If S is a type 1 representation of a PMC fault model, then S
satisfies the Irredundancy Hypothesis.
Lemma 4.2.4: If S is a type 1 representation of a PMC fault model, then for
every F€A,,
A(F) = ( reF | 1€k Lp exists where
G(f)~1and G(£)=0, for all fFEF—{f}}.

Corollary 4.2.5: If S is a type 1 representation of a PMC fault model, then A(.)
satisfies the Cardinality Condition.

The preceding corollaries and Theorem 4.1.5 immediately imply the follow-
ing theorem:.
Theorem 4.2.6: Let S be a type 1 representation of a PMC fault model, and let
be such that 1grgn If
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1A > min(IF -1, 2—IF 1) +

for every F € A, such that v IF l<2-r, then S is one-step r-fault diagnosabile.

Using Theorem 4.2.6, one can reconstruct the diagnosability conditions
derived by Hakimi and Amin [HAK74) and show that condition 1 of Theorem
2 [HAK74), that is, n>>27, is actually implied by the other conditions of that
theorem. | |

Lemma 4.2.7: Let S be a type 1 representation of a PMC fault model, and let =
be such that 1€r<n. Every unit in the PMC model is tested by r others (con-
dition 2 [HAK74)) if and only if JA(F) I=7 for every F€4,, IFl=r.

Lemma 4.2.8: Let S be a type 1 representation of a PMC fault model, and let v
be such that 1€ <A For every r such that 0gr <7, and every X CV such
that 1X l=n—2r4r, ITX | > (condition 3 [HAK?74)) if and only if

1A > 2=IF | for every Fe4,, r<IFlig2s.

Theorem 4.1.5 and Lemmas 4.2.7 and 4.2.8 immediately imply the follow-
ing theorem and show that conditions 2 and 3 [HAK74, Theorem 2] alone are
sufficient for one-siep r-fault diagnosability.

Theorem 4.2.9: Let S be a type 1 representation of a PMC fault model, and let r
be such that 1€ r<n. If every unit in the PMC model is tested by 7 others
(condition 2 [HAK74)), and for every r such that 0€r <7, and every X CV
such that X l=n—2r+r, ITX > (condition 3 [HAK74)), then S is one-step
r-fault diagnosable.

The following lemma shows that n>27 (condition 1 [HAK74]) is implied
by the conditions of Theorem 4.2.6.

Lemma 4.2.10: Let S be a type 1 representation of 8 PMC fault model, and let ¢
be such that 1€rn. If




1A > min(IFI-1,2—IFD)

for every F€ A, such that < IF [ €2r, then n>2r.

In the special case of the PMC fault model in which no two units test each
other, the diagnosability conditions of Theorem 4.2.6 can be further simplified.
Lemma 4.2.11: Let S be a type 1 representation of a PMC fault model in which
no two units test each other, and let v be such that 1<r<n, then

IAG) N > minC 17 -1, 2—1F [
for every F€ A, such that 1< |F <27 if and only if |AGF) ]| = 7 for every
F €A, such that 1F l=r.

Theorem 4.2.6 and Lemmas 4.2.7 and 4.2.11 immediately imply the follow-
ing theorem, which is equivalent to Theorem 1 of [HAK74).
Theorem 4.2.12: Let S be a type 1 representation of a PMC fault model in
which no two units test each other, and let 7 be such that 1<r<n. If every

unit is tested by r other units, then S is one-step r-fault diagnosable.




5. CONCLUSION

Our research presents a new approach for determining diagnosability condi-
tions by using a new fault model having flexible features. We have shown that
without initially assuming conditions on the fault-test relationship, diagnostic
conditions can be determined that have a wide application and which should
lead to new testability design guidelines.

The results given in this paper were limited to sufficient conditions for
one-step 7-fault diagnosability. It can be shown, however, that the approach is
applicable to other types of diagnosability p§'0perties and leads to necessary con-
ditions as well. We are currently engaged in research efforts to extend this

approach to transient fault situations.




6. PROOFS

This section contains the proofs of theorems and lemmas in Sections 4.1
and 4.2. Lemmas 6.1 and 7.3 are used to simplify these prqof‘a

Lemma 6.1: Let S be a fault model and let F€ 4, then (i) for every b €G(F) an |
index k exists such that 1<k <p, where 0¢ H (b, ) if and only if
(ii) for every a € H(G(F)) an index k exists such that 1<k <p, where a; #0.

PROOF: (i)—«(ii). Let a€H(G(F)). This implies that b€ G(F) exists
such that a €H(d). Therefore, by (i), an index k exists such that 1<k <p,
where 0¢ H(b, ), which implies a, 70.

(ii)—(i). Let b €G(F). Since H(b)SH(G (F)), by (ii), for every a€H(b) an
index j exists such that 1</ <p, where a,720. Therefore, a(0, ...,0) for
every a€H(b). Then, since H(b) = H(b{)xH(dy)x...xH(b,), this implies
that an index k exists such that 1<k <p, where 0¢ H (5, ). O

Lemma 6.1 and Definition 3.2.2 immediately imply an alternative
definition for detectable subsets. This definition is used in the proofs of Lem-
mas 6.3, 41.1 and 4.2.4.

Corollary 6.2: Let S be a fault model and let F be an admissible fault situation.
A set B of elementary faults is a detectable subset of F if and only if

(i) B#=¢

(i) BCF

(iii) for every b€G(F) an index k exists such that 1<k <p, where 0¢ H(b, )
and G(f),= O for every f€F—B

(iv) the only subset of B satisfying (i), (ii) and (iii) is B itself,

The following lemma verifies a statement made at the end of Section 3.2 and is
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used in the proof of Lemma 4.1.2.

Lemma 6.3: Let S satisfy the Irredundancy Hypothesis, let F € 4 such that
A(F)#2¢, and let BEA(F). 1If F € A such that B CF CF, then B€ A(F).

PROOF: If F=F, then immediately, A(F) =A(F). Assume that fFCF.
Let a €G(F). By the weakly morphic property, a* G (F~F)CG(F). Let
b€a+*G(F—F). This implies that 5€G(F). Since B€A(F), by Corollary 6.2
an index k exists such that 1<k <p, where 0¢ H(b;) and G(f),~ O for all
fE€F—B. Since F—F CF—B, G(F—F),=0 and, by the Irredundancy
Hypothesis, b;=a,*O=a,. Then, since /—B CF—B, an index k exists such
that 1<k <p, where 0¢ H(a,) and G (/)= O for every f€ F—B. Hence,
BeA(F). O

The remainder of this section consists of the proofs of theorems and lem-
mas in Sections 4.1 and 4.2.

Lemma 4.1.1: Let S satisfy the Irredundancy Hypothesis and let 7 be such that
1<r<n. 1f 10 every pair {F,.F,} in P;(7) there corresponds a set B in
A(F,UF,) such that either BNF,~¢p or BNF,=¢, then § is one-step 7-fault
diagnosable.

PROOF: Let (F,.F, J€ P,(7) and assume without loss of generality that
F,#Fq and that B € A(F, UF,) exists such that BNFy=¢. Hence,
BCF,CF, UF,. Leta€G(F,).

Case (1) F,=F,UF,. In this case, A(F,) =A(F, UF,), and by Corollary
6.2, an index k exists such that 1k <o, where 0¢ H(a, ) and G(f),~ O for
every f € F,—~B. Then, since F, C F,—B, by the Irredundancy Hypothesis
G(F, )= 0.
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Case (2): F,CF,UF,. In this case, by the weakly morphic property,
a*G({F,UF, }-F,)SG(F, UF,). Let b€a»G({F, UF,}-F,), then
b€G(F,UF,). Since BEA(F,UF,), by Corollary 6.2 an index k exists such
that 1<k <p, where 0§ H(b, ) and G(f),= 0 for every f€(F, UF,}—B. Then,
by the Irredundancy Hypothesis, £, C(F, UF; }—B implies G(F, ), =0 and
{Fq UF, }-F, C{F, UF, }--B implies G({F, UF, }-F, )= 0. Therefore, b,=ay,
which implies 0¢ H(a,).

Hence, in both cases (1) and (2) an index & exists such that 1<k <p,
where H(a, JNH(G(F,);) =~p, which implies H(a)NH(G(F,)) ~p. Accord-
ingly, since a €G(F,) is arbitrary, H(G(F,))NH(G(F,)) =$. Since this is
true for any pair in Py(r), S is one-step r-fault diagnosable. O

Lemma 4.1.2: 1f 10 every pair (£,.F,} in P,() there corresponds a set 8 in
A(F, UF,) such that either BNF,=p or BNFy=¢p, then 10 every pair (F,.F,}
in Py(r) there corresponds a set B in A(F, UF,) such that either BNF,=¢ or
BNFy=¢.

PROOF: We shall prove the contrapositive of this lemma; that is, we will
assume that there {F,,F, }€ Py(7) exists such that for every B€ A(F, UF,),
BNF,7¢ and BNF,7¢, and then construct (£, .F, }€ P,(+) such that for
every BeA(F, UF,), BNF, ¢ and BNF, .

Case (1): IF, UF, I<1-. Without loss of generality, let £, € F, such that
SobF,. Let V=F,UF, and W=V —{f,}). Since r&n, X CE—F, UF, exists
such that X I= 7 —IF, UF, . Let £,=X UV and £,=X UW; then
(F, .k, )€ Py(7) and F, UF, CF, UF;. By assumption, {£, }¢ A(F, UF,). There-
fore, by Lemma 6.3, (£, )¢ A(F, UF,). Consequently, since
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(£, }=F, UF,—F, N F,, for every Be A(F, UF,), BN(F,NF,)=. This implies
that BNF, % and BNF, 7.

Case (2): [F,UF, 1>+, In this case, §{F, UF,}-F, 1>+ —IF, | 30,
thus, ¥ C{F, UF,}—F, exists such that IV =+ ~1F, . Let £,=¥ UF,.
Similarly, W C{F, UF, }—F, exists such that IW l=+ —IF, 1. Let F,~w UF,.
Consequently, {F,.F, )€ P,(+) and F, UF,=F, UF,. Hence,

A(F,UF,) =A(F, UF,). Therefore, if B€A(F, UF,) exists, then
Be€A(F,UF,). By assumption, then, BNF, 4, which implies B NF, ¢ and
BNF,#4¢, which implies BNFy=¢. O

Theorem 4.1.5: Let S satisfy the Irredundancy Hypothesis, let A(.) satisfy the
Cardinality Condition and let = be such that 1<r<n If

1A > min(IFl-1,2r -1F D

for every F€ A, such that 7 ir |<2r, then S is one-step r-fault diagnosable.

PROOF: Assume that JA(F)I>min(1F1—-1,2r —LF]) for every Fe 4,
such that r< IFl<2r. Let (F,.F, )€ P,(+); then r< LF, UF, I <27 and

i F UF -_lp - U - V_ U
IF, UF, l=min(IF, UF, I-1,2¢ ~IF,UFR D). Let peatun, B

Then 1B I=1 for all BE€A(F, UF,) and

1A, UR) I>min(1F, UF, 11,27 —IF, UF, |) imply that

v I>min(IF, UF, 11,27 =IF, UF, 1) =IF,nF,|. Hence, feV exists
such that F¢F,NF,. Since f€V if and only if {/}€ A(F, UF,), this implies
{(r1€ A(F, UF,) exists such that either {f}NF,=¢ or {f/]NF,=$. Therefore, by
Theorem 4.1.3, S is one-step r-fault diagnosable. O

Lenmma 4.2.2: 1f S is a type 1 representation of a PMC fault model, then S is




weakly morphic with respect to 8 morphic map # , where 0¢ 0=0,
0% 1=140=1 and 0#2=14 220 Q=24 1=2, (The values 1+ 1 and 2+ 2 are not

used in this representation.)

PROOF: Definition 4.2.1 satisfies Definition 3.1.2(i). Let F€ 4 such that
1F1>1 and tet 1<k <p. Definition 4.2.1(jii) implies that f;, £, € E exist such
that for every f€E,

2, f=f;
G(f)k -11, f'-f}
0, otherwise

Let * be the morphic map given in this lemma and let
G‘(F) -— G(fi')*GU}l). '".G(,.”f|)’

IFl
where £,€F, 1</<IFll and Y, £, = F. Then, G (F),~2 if and only if f,€F,

Gs(F),=1 if and only if £, ¢ F, f;€F and Ga (F),= 0 if and only if £;¢F, f,¢F.
Thus, Ga (F) = G(F) for every FE€A. Hence, Definition 4.2.1 satisfies
Definition 3.1.2(ii) and therefore, S is weakly morphic with respect to *. O

Lemma 4.2.4: 1f S is a type 1 representation of a PMC fault model, then for
every F€A,
A(F) = { f€F | 1<k <p exists where
G(f)=1and G(f)~0, for all FEF—{f} ).

PROOF: Let F€A, and let
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Q(F) ={ f€F | 1<k <p exists where
G(f)=1 and G(f)=~0, for all feF—{r}}.

Let A(F) be defined according to Definition 3.2.2.

Case (1): A(F) = ¢. Definition 3.2.2(jii) implies that a € H(G(F)) exists
such that a=(0,0,...,0). Definition 4.2.1(iv) implies that G(F),#1 for every
index k such that 1<k €p. Therefore, by Definition 4.2.1(iii), for each index &
either G(f),= 0 for every f€F or £, €F exists such that G(f},),=2. Hence,
Q(F) = ¢, and consequently, A(F) = Q(F) = ¢.

Case (2): A(F)#¢. Let BEA(F). Let a= G(F), then by Corollary 6.2,
an index k exists such that 1<k <p, where 0¢ H(a, ) and G(f),= O for every
f€F—B. Definition 4.2.1(iv) implies that a,=1. Definition 4.2.1(iii) implies
that f, € F exists such that G(/;),~1 and G (f),= O for every f€F—{(,}.
Therefore, by Definition 3.2.2(iv), B={f;} and B€Q(F). Hence,
AF)CQ(F).

Let {f;}€Q(F), then f;€F, and an index k exists such that 1k <p, where
G(f;),=1 and G(f),= O for every £ € F—{f;}. Definition 4.2.1(iv) implies that
for every a € H(G (F)), a, 70 and G(f),= O for every f € F—{f;}. Hence,
{£,}€ A(F), and thus, Q(F)CA(F). Therefore, A(F) =Q(F). O

Lemma 4.2.7: Let S be a type 1 representation of a PMC fault model, and let r
be such that 1< 7€n. Every unit in the PMC model is tested by = others (con-
dition 2 [HAK74]) if and only if JA(F)l= 7 for every F€A,, IFl=1r.

PROOF: Let f,€E and define T(f;) = (f,€E | (v,,v))€EC, i</). Then,
each unit in the PMC model that tests unit v, corresponds to a elementary fault
inT(f).
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First, assume every unit in the PMC model is tested by at least r others.
Then, for every £€E, IT(f)| 37. Let Fe A, such that IF |=r, and le1 £j€F.
Since £,¢T(f,) and IT (/)1 37, /,€T (1)) exists such that £;¢ F. Therefore,
by Definition 4.2.1(iii) an index k exists such that 1<k <p, where G(f;),=2
and G(f}),=1. Hence, f;€ A(F). Since this is true for any f€F, A(F) =Fand
therefore, JAGF)I=1F = 1.

Second, assume that a unit in the PMC model exists that is tested by fewer
than 7 others. Then f€E exists such that ||T(f,)l<f. Let
W CE—{f,JUT () such that IW |=r —1-IT(/)]. Lex
F={f,JUT(f;)UW; then, IFll=+. By definition 4.2.1(iii), for every index k
such that 1<k <pand G(f; ) =1, f; €T (f;) exists such that G(f;)y=2. Thus,
f,€F implies that £;$ A(F). Hence, [AF)I<IFl=r. O

Lemma 4.2.8: Let S be a type 1 representation of a PMC fault model, and let =
be such that 1< r<n. For every r such that 0<r <7 and every X C¥ such that
1A > 2r =IF] for every Fed,, r<IFl<2r.

PROOF: Let XY CV. Then let F€ A, be defined such that f; € F if and only
if v,é X. Then F is the set of elementary faults corresponding to the vertices in
the complement of X. By definition [HAK74], TX= {v,¢X | (v,,v;)€C, v,€X).
By Definition 4.2.1(iii), (v;,v;)€C if and only if an index k exists such that
1€k €p, where G(f;),=2 and G(f,)y=1. Hence, v;€I'X if and only if
Sf;€A(F). Therefore, Irx =)l

First, assume for every r such that 0gr <7, and for every X CV such that
Ix l=n~274r, that ITX I>r. Let Fe A, such that r<IF Ig2r.
Let r=2r —)FI; then 0gr <7 and LY len—LF |=n—27+.

E——




Then, IAGF) I=ITx I>r=2¢ —(F1.

Second, assume that lA(F)1>27 —IF Ifor every Fe 4, such that
r<IFlg2r. Let X CV and let 0<r <7 such that kX l=n—2r+r. Then,
IFl=n—Lx I=27 —r and r< | Fl<27. Hence,

Irx =AM I>2r =lFl=r.0

Lemma 4.2.10: Let S be a type 1 representation of a PMC fault model, and let 7
be such that 1€r<n. If

A > min(1F I-1,27-IF D)
for every F€ A, such that v iF ||<2r, then n>2r.

PROOF: Note that for a type 1 representation of a PMC model,
IAGE)I=0. Assume that |AGFY I >min(IF 11,27 =IF 1) for every Fe 4,
such that 7 IF '(‘27, and assume that n is such that 7<n <27.

If n= 7, then JACE) l= 0gmin(n—1,2n—n) =n—1 is a contradiction. If
r<n<27, then jaE) = O min(n—1,2r —n) =27 —n is a contradiction.
Therefore, n>2r. O

Lemma 4.2.11: Let S be a type 1 representation of a PMC fault model in which
no two units test each other, and let = be such that 1< r<m; then,

A > minCIF 11,27 =IFD)

for every FE€A, such that << |F 1 <27 if and only if 1AGF) ] = 7 for every
FE€A, such that [Fl=1.
PROOF: Assumption (1): IAGF) = £ for every F€ 4, such that
IF = r. Assumption (2): F, €4, exists such that r< IF, I <2r and
1A, I2r —IF, |. From assumptions (1) and (2) we derive a
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contradiction, thus proving that if assumption (1) holds, assumption (2) cannot
hold.
Let f,€E and define T(f)) = {f,€E | (v,,v))€EC, i3£/}). Then, each unit in
the PMC model that tests unit v, corresponds to a elementary fault in 7(/)).
By Lemma 4.2.7, assumption (1) implies that IT (/)| 21 for every f€E.
Assumption (2) implies that |F,~A(F,)1>2. Lemma 4.2.4 and
Definition 4.2.1(jii) imply that for every f € F,—A(F,), T(f)CF,. Let
T, (f) =T (NIN(F,—AF,)} =T (f) — (AFINT(f)). Then
IT,(H 11 —lIAGF)]. Consequemly,

rer e T3 UE—AG) X —IAGE)D.

(The quantity p z  I7,(n| represents the number of distinct tests 4 €T

€F,—A(F,)
such that £€F,—A(F,) and f€F, exist where G(f),=1 and G(f),=2.)
If no two units test each other, then f; €T (f) implies that £¢T(f;).
Therefore, f;€T,(f) implies that £ ¢T,(f;). Consequently,

UF,—-AE) DN F,—AEH 1)

T
fer.-}-:Aur.)l Nl 2

Combining these bours yields,

(NF,—AGEYDUF—-AE)1-1)
2

or equivalently, since 1F,~A(F,) l=1F, I-1AE)I,
AN 3 27 =lIF, 141,

> (IF,~AE) D =1AEND,

which contradicts assumption (2).

Therefore, whenever no two units in the PMC model test each other, the
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condition JAUR) | = 7 for every F€ 4, such that 1Fl= r implies that
1A I>minCIF 11, 2¢ —IF |) for every F€ 4, such that < IF I 2.
The converse is immediate. O




[BAR76] Barsi, F., Grandoni, F. and Maestrini, P., A Theory of Diagnosabil-
ity of Digital Systems, IEEE Transactions on Computers, Vol C-25 , June
1976, pp. 585-593.

[COR76] Corluhan, AM. and Hakimi, S.L., On an Algorithm for Identifying
Faults in a T-Diagnosable System, Proceedings of the 1976 Conference on
Information Science and Systems, The Johns Hopkins University, Baltimore,
1976, pp. 370-375.

[FRI80] Friedman, A.D. and Simoncini, L., System-Level Fault Diagnosis,
Computer, March 1980, pp. 47-53.

[HAK74] Hakimi, S.L. and Amin, A.T., Characterization of Connection
Assignment of Diagnosable Systems, IEEE Transactions on Computers, Vol.
C-23, January 1974, pp. 86-88.

[(HAV81] Havlicsek, B.L. and Meyer, G.G.L., Totally Morphic HM Fault
Model, The Johns Hopkins University, Department of Electrical Engineering
and Computer Science, Technical Report JHU-EE-81-15, 1981.

[HAV82] Havlicsek, B.L. and Meyer, G.G.L.., A New System-level Approach
to Diagnosability, The Johns Hopkins University, Department of Electrical
Engineering and Computer Science, Technical Report JHU-EECS-82-6, 1982.

[HOL79] Holt, C.S. and Smith, J.E., Diagnosis of Systems with Asymmetric
Invalidation, 17th Annual Allerton Conference, October 1979, pp. 354-363.
[KAM75] Kameda, T., Toida, S. and Allan, F.J., A Diagnosing Algorithm for
Networks, Information and Control, Vol. 29 (1975), pp. 141-148,.

e T fm r TP AT




3

[MEY78] Meyer, G.G.L. and Masson, G.M., An Efficient Fault Diagnosis
Algorithm for Symmetric Multiple Processor Architectures, IEEE Transactions
on Computers, Vol. C-27, No. 11, November 1978, pp. 1059-1063.

[MEY79] Meyer, G.G.L., Fault Diagnosis Algorithms for Asymmetric Modu-
lar Architectures, 17th Annual Allerton Conference, October 1979, pp. 350-
353, |

[MEY81] Meyer, G.G.L., Fault Diagnosis Algorithms for Asymmetric Modu- 4
lar Architectures, IEEE Transactions on Computers, Vol. C-30, No. 1, January |
1981, pp. 81-83.

[PRE67] Preparata, F.P., Metze, G. and Chien, R.T., On the Connection
Assignment Problem of Diagnosable Systems, TEEE Transactions on Electronic
Computers, Vol. EC-16 , December 1967, pp. 848-854.

[RUS75a] Russell, J.D. and Kime, C.R., System Fault Diagnosis: Closure and
Diagnosability with Repair, IEEE Transactions on Computers, Vol. C-24,
November 1975, pp. 1078-1089.

[SMI79] Smith, J.E., Universal System Diagnosis Algorithms, IEEE Transac-
tions on Computers, Vol. C-28, No. 5, May 1979, pp. 374-378.

[SOG64] Sogomonyan, E.S., Monitoring Operability and Finding Failures in
Functionally Connected Systems, Automatic and Remote Control, Vol 25, No.
6, June 1964, pp. 874-882.

P e e




SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

s REPORT DOCUMENTATION PAGE . mggg”gg‘f;;ggg,’,}g":om
. 1. REPORT NUMBERN 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
o JHU/EECS-82/6 5 /)A?(7‘/74' .
4. TITLE (and Subtiile) S. TYPE OF REPORT & PERIOD COVERED
A New System-Level Approach Technical
to Diagnosability. S. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) ®. CONTRACT OR GRANT NUMBER(s)
! B. L. Havlicsek N00014-80-C-0772
G. G. L. Meyer
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

The Johns Hopkins University
Baltimore, MD 21218

1. CONTROLLING OFFICE NAME AND ADDAESS 12. REPORT DATE
Office of Naval Research December 1, 1982
Arlington, VA 22217 13. NUMBER OF PAGES W
33 '
4. MONITORING AGENCY NAME & ADDRESS(If ditferent from Controlling Office) 15. SECURITY CLASS. (of thie repert)
unclassified
1Se. D!CLA’SIFICATIO.J DOWNGRADING |
SCHEDULE |&

15. DISTRIBUTION STATEMENT (of this Report)

"~ Approved for public release, distribution unlimited

17. DISTRIBUTION STATEMENT (of the ebetract entered In Block 20, Il different from Repert)

10. SUPPLEMENTARY NOTES

19. XEY WORDS (Cent) on vee alde I y and ldentity by block number)

fault, fault model, fault diagnosis

20. ABSTRAACT (Continve en reverse slde I necessary and identily by block number)

This paper presents a new approach to determine the conditions that

ensure diagnosability properties in complex systems. The approach uses

a new system-level fault model having both internal and observable test

outcomes. The results obtsined demonstrate that previous diagnosability :
conditions can be reconstructed and that new diagnossbility conditions 2
can be determined.

DD 55 1473  eoimion oF 1 nov 68 18 oesoLETE

$/N 0102- LF- 014- 4401 SECURITY CLASSIPICATION OF THIS PAGE (When Date Bnrer







